Persamaan diferensial parsial
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Persamaan diferensial parsial (PDP) adalah persamaan yang di dalamnya terdapat suku-suku diferensial parsial, yang dalam matematika diartikan sebagai suatu hubungan yang mengaitkan suatu fungsi yang tidak diketahui, yang merupakan fungsi dari beberapa variabel bebas,
dengan turunan-turunannya melalui variabel-variabel yang dimaksud. PDP
digunakan untuk melakukan formulasi dan menyelesaikan permasalahan yang
melibatkan fungsi-fungsi yang tidak diketahui, yang merupakan dibentuk
oleh beberapa variabel, seperti penjalaran suara dan panas, elektrostatika, elektrodinamika, aliran fluida, elastisitas, atau lebih umum segala macam proses yang terdistribusi dalam ruang, atau terdistribusi dalam ruang dan waktu. Kadang beberapa permasalahan fisis yang amat berbeda memiliki formulasi matematika yang mirip satu sama lain.
Pengantar
Bentuk paling sederhana dari persamaan diferensial adalah
di mana u suatu fungsi tak diketahui dari x dan y. Hubungan ini mengisyaratkan bahwa nilai-nilai u(x,y) adalah tidak bergantung dari x. Oleh karena itu solusi umum dari persamaan ini adalah
di mana f adalah suatu fungsi sembarang dari variabel y. Analogi dari persamaan diferensial biasa untuk persamaan ini adalah
yang memiliki solusi
di mana c bernilai konstan (tidak bergantung dari nilai x).
Kedua contoh di atas menggambarkan bahwa solusi umum dari persamaan
diferensial biasa melibatkan suatu kostanta sembarang, akan tetapi
solusi dari persamaan diferensial parsial melibatkan suatu fungsi
sembarang. Sebuah solusi dari persamaan diferensial parsial secara umum
tidak unik; kondisi tambahan harus disertakan lebih lanjut pada syarat batas dari daerah di mana solusi didefinisikan. Sebagai gambaran dalam contoh sederhana di atas, fungsi dapat ditentukan jika dispesifikasikan pada sebuah garis .
Label:
MATEMATIKA (KELAS XI),
Materi Kelas XI
0 komentar: